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Abstract
Starting on the basis of the non-commutative q-differential calculus, we
introduce a generalized q-deformed Schrödinger equation. It can be viewed as
the quantum stochastic counterpart of a generalized classical kinetic equation,
which reproduces at the equilibrium the well-known q-deformed exponential
stationary distribution. In this framework, q-deformed adjoint of an operator
and q-Hermitian operator properties occur in a natural way in order to satisfy
the basic quantum mechanics assumptions.

PACS numbers: 03.65.−w, 03.65.Fd, 02.20.Uw

1. Introduction

In the recent past, there has been a great deal of interest in the study of quantum algebra and
quantum groups in connection with several physical fields [1]. From the seminal work of
Biedenharn [2] and Macfarlane [3], it was clear that the q-calculus, originally introduced in
the study of the basic hypergeometric series [4–6], plays a central role in the representation
of the quantum groups with a deep physical meaning and not merely a mathematical exercise.
Many physical applications have been investigated on the basis of the q-deformation of the
Heisenberg algebra [7–11]. In [12, 13], it was shown that a natural realization of quantum
thermostatistics of q-deformed bosons and fermions can be built on the formalism of the q-
calculus. In [14], a q-deformed Poisson bracket, invariant under the action of the q-symplectic
group, has been derived and a classical q-deformed thermostatistics has been proposed in [15].
Furthermore, it is remarkable to observe that the q-calculus is very well suited to describe
fractal and multifractal systems. As soon as the system exhibits a discrete-scale invariance,
the natural tool is provided by Jackson q-derivative and q-integral, which constitute the natural
generalization of the regular derivative and integral for discretely self-similar systems [16].

In the past, the study of generalized linear and nonlinear Schrödinger equations has
attracted a lot of interest because many collective effects in quantum many-body models can be
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described by means of effective theories with a generalized one-particle Schrödinger equation
[17–20]. On the other hand, it is relevant to mention that in recent years many investigations
in literature have been devoted to non-Hermitian and pseudo-Hermitian quantum mechanics
[ 21–25, 27].

In the framework of the q-Heisenberg algebra, q-deformed Schrödinger equations have
been proposed [28, 29]. Although the proposed quantum dynamics is based on the
noncummutative differential structure on configuration space, we believe that a fully consistent
q-deformed formalism of the quantum dynamics, based on the properties of the q-calculus,
has been still lacking.

In this paper, starting on a generalized classical kinetic equation reproducing as stationary
distribution of the well-known q-exponential function, we study a generalization of the
quantum dynamics consistently with the prescriptions of the q-differential calculus. At this
scope, we introduce a q-deformed Schrödinger equation with a deformed Hamiltonian which
is a non-Hermitian operator with respect to the standard (undeformed) operators properties
but its dynamics satisfies the basic assumptions of the quantum mechanics under generalized
operators properties, such as the definition of q-adjoint and q-Hermitian operators.

2. Noncommutative differential calculus

We shall briefly review the main features of the noncommutative differential q-calculus for
real numbers. It is based on the following q-commutative relation among the operators x̂ and
∂̂x :

∂̂x x̂ = 1 + qx̂∂̂x, (1)

with q a real and positive parameter.
A realization of the above algebra in terms of ordinary real numbers can be accomplished by
the replacement [14, 30]

x̂ → x, (2)
∂̂x → D(q)

x , (3)
where D(q)

x is the Jackson derivative [4] defined as

D(q)
x = D

(q)
x − 1

(q − 1)x
, (4)

where

D(q)
x = qx∂x (5)

is the dilatation operator. Its action on an arbitrary real function f (x) is given by

D(q)
x f (x) = f (qx) − f (x)

(q − 1)x
. (6)

The Jackson derivative satisfies some simple properties which will be useful in the following.
For instance, its action on a monomial f (x) = xn is given by

D(q)
x xn = [n]qx

n−1 (7)

and

D(q)
x x−n = − [n]q

qn

1

xn+1
, (8)

where n � 0 and

[n]q = qn − 1

q − 1
(9)
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are the so-called basic numbers. Moreover, we can easily verify the following q-version of
the Leibnitz rule:

D(q)
x (f (x)g(x)) = D(q)

x f (x)g(x) + f (qx)D(q)
x g(x),

= D(q)
x f (x)g(qx) + f (x)D(q)

x g(x). (10)

A relevant role in the q-algebra, as developed by Jackson, is given by the basic binomial
series defined by

(x + y)(n) = (x + y)(x + qy)(x + q2y) · · · (x + qn−1y)

≡
n∑

r=0

[n
r

]
q
qr(r−1)/2xn−ryr , (11)

where [n
r

]
q

= [n]q!

[r]q![n − r]q!
(12)

is known as the q-binomial coefficient which reduces to the ordinary binomial coefficient in
the q → 1 limit [6]. We should remark that equation (12) holds for 0 � r � n, while it is
assumed to vanish otherwise and we have defined [n]q! = [n]q[n − 1]q · · · [1]q . Remarkably,
a q-analogue of the Taylor expansion has been introduced in [4] by means of a basic binomial
(11) as

f (x) = f (a) +
(x − a)(1)

[1]!
D(q)

x f (x)

∣∣∣
x=a

+
(x − a)(2)

[2]!
D(q)

x

2
f (x)

∣∣∣
x=a

+ · · · , (13)

where D(q)
x

2 ≡ D(q)
x D(q)

x and so on.
Consistently with the q-calculus, we also introduce the basic integration∫ λ0

0
f (x) dqx =

∞∑
n=0

�qλnf (λn), (14)

where �qλn = λn − λn+1 and λn = λ0q
n for 0 < q < 1 whilst �qλn = λn−1 − λn and

λn = λ0q
−n−1 for q > 1 [5, 6, 15, 16]. Clearly, equation (14) is reminiscent of the Riemann

quadrature formula performed now in a q-nonuniform hierarchical lattice with a variable step
�qλn. It is trivial to verify that

D(q)
x

∫ x

0
f (y) dqy = f (x), (15)

for any q > 0.
Let us now introduce the following q-deformed exponential function defined by the series:

Eq(x) =
∞∑

k=0

xk

[k]q!
= 1 + x +

x2

[2]q!
+

x3

[3]q!
+ · · · , (16)

which will play an important role in the framework we are introducing. The function (16)
defines the basic exponential, well known in the literature since a long-time ago, originally
introduced in the study of basic hypergeometric series [5, 6]. In this context, let us observe
that definition (16) is fully consistent with its Taylor expansion, as given by equation (13).

The basic exponential is a monotonically increasing function, dEq(x)/dx > 0, convex,
d2Eq(x)/dx2 > 0, with Eq(0) = 1 and reducing to the ordinary exponential in the q → 1
limit: E1(x) ≡ exp(x). An important property satisfied by the q-exponential can be written
formally as [6]

Eq(x + y) = Eq(x)Eq−1(y), (17)

3
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where the left-hand side of equation (17) must be considered by means of its series expansion
in terms of basic binomials,

Eq(x + y) =
∞∑

k=0

(x + y)(k)

[k]!
. (18)

By observing that (x − x)(k) = 0 for any k > 0, since (x − x)(0) = 1, from equation (17) we
can see that [15]

Eq(x)Eq−1(−x) = 1. (19)

The above property will be crucial in the following introduction to a consistent q-deformed
quantum mechanics.

Among many properties, it is important to recall the following relation [6]:

D(q)
x Eq(ax) = aEq(ax), (20)

and its dual ∫ x

0
Eq(ay) dqy = 1

a
[Eq(ax) − 1]. (21)

Finally, it should be pointed out that equations (20) and (21) are two important properties of
the basic exponential which turns out to be not true if we employ the ordinary derivative or
integral.

3. Classical q-deformed kinetic equation

Starting from the realization of the q-algebra, defined in equations (2)–(3), we can write for a
homogeneous system the following q-deformed Fokker–Planck equation [31]:

∂fq(x, t)

∂t
= D(q)

x

[−J
(q)

1 (x) + J
(q)

2 D(q)
x

]
fq(x, t), (22)

where J
(q)

1 (x) and J
(q)

2 are the drift and diffusion coefficients, respectively.
The above equation has stationary solution f

(q)
st (x) that can be written as

f
(q)
st (x) = NqEq[−�q(x)], (23)

where Nq is a normalization constant, Eq[x] is the q-deformed exponential function defined
in equation (16) and we have defined1

�q(x) = − 1

J
(q)

2

∫ x

0
J

(q)

1 (y) dqy. (24)

If we postulate a generalized Brownian motion in a q-deformed classical dynamics by
mean the following definition of the drift and diffusion coefficients:

J
(q)

1 (x) = −γ x
(
qD(q)

x + 1
)
, J

(q)

2 = γ /α, (25)

where γ is the friction constant, α is a constant depending on the system and D
(q)
x is the

dilatation operator (5), the stationary solution f
(q)
st (x) of the above Fokker–Planck equation

can be obtained as solution of the following stationary q-differential equation:

D(q)
x f

(q)
st (x) = −αx

[
qf

(q)
st (qx) + f

(q)
st (x)

]
. (26)

It easy to show that the solution of the above equation can be written as

f
(q)
st (x) = NqEq[−αx2]. (27)

1 In the following, for simplicity, we limit ourselves to consider the drift coefficient as a monomial function of x.
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4. q-deformed Schrödinger equation

We are now able to derive a q-deformed Schrödinger equation by means of a stochastic
quantization method [32].

Starting from the following transformation of the probability density:

fq(x, t) = Eq[−�q(x)

2
]ψq(x, t), (28)

where �q(x) is the function defined in equation (24), the q-deformed Fokker–Planck equation
(22) can be written as

∂ψq(x, t)

∂t
= J

(q)

2 D(q)
x

2
ψq(x, t) − Vq(x)ψq(x, t), (29)

where

Vq(x) =
{

1

2
D(q)

x J
(q)

1 (x) +

[
J

(q)

1 (x)
]2

4J
(q)

2

}
. (30)

The above equation has the same structure of the time-dependent Schrödinger equation.
In fact, the stochastic quantization of equation (22) can be realized with the transformations

t → t

−ih̄
, (31)

J
(q)

2 → h̄2

2m
, (32)

getting the q-generalized Schrödinger equation

ih̄
∂ψq(x, t)

∂t
= Hqψq(x, t), (33)

where

Hq = − h̄2

2m
D(q)

x

2
+ Vq(x) (34)

is the q-deformed Hamiltonian. Let us note that the Hamiltonian (34) is a not-Hermitian
operator with respect to the standard definition based on the ordinary (undeformed) scalar
product of square-integrable functions [9, 14]. In the following section, we will see as
this aspect can be overridden by means the introduction of a q-deformed scalar product and
generalized properties of operators inspired to the q-calculus.

The above equation admits factorized solution ψq(x, t) = φ(t)ϕq(x), where φ(t) satisfies
to the equation

ih̄
dφ(t)

dt
= Eφ(t), (35)

with the standard (undeformed) solution

φ(t) = exp
(
− i

h̄
Et

)
, (36)

while ϕq(x) is the solution of time-independent q-Schrödinger equation

Hqϕq(x) = Eϕq(x). (37)

In one-dimensional case, for a free particle (Vq = 0) described by the wavefunction
ϕ

f
q (x), equation (37) becomes

D(q)
x

2
ϕf

q (x) + k2ϕf
q (x) = 0, (38)

5
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where k =
√

2mE/h̄2. The solution of the previous equation can be written as

ϕf
q (x) = NEq(ikx). (39)

The above equation generalizes the plane wavefunction in the framework of the q-calculus.

5. q-deformed products and q-Hermitian operators

In order to develop a consistent deformed quantum dynamics, we have to generalize the
products between functions and properties of the operators in the framework of the q-calculus.

Let us start on the basis of equation (19), which implies

Eq(ix)(Eq−1(ix))
 = 1, (40)

Eq(ix)
 = (Eq−1(ix))−1, (41)

and in terms of the q-plane wave (39)

ϕ
f

q−1(x)
ϕf
q (x) = N2. (42)

Inspired to the above equation, it appears natural to introduce the complex q-conjugation of a
function as

ψ †
q(x) = ψ


q−1(x), (43)

and, consequently, the probability density of a single particle in a finite space as

ρq(x, t) = |ψq(x, t)|2q = ψ †
q(x, t)ψq(x, t) ≡ ψ∗

q−1(x, t)ψq(x, t). (44)

Thus, the wavefunctions must be q-square-integrable functions of configuration space, that is
to say the functions ψq(x) such that the integral∫

|ψq(x)|2q dqx (45)

converges.
The function space defined above is a linear space. If ψq and ϕq are two q-square-

integrable functions, any linear combinations αψq +βϕq , where α and β are arbitrarily chosen
complex numbers, are also q-square-integrable functions.

Following this line, it is possible to define a q-scalar product of the function ψ by the
function ϕ as

〈ϕ,ψ〉q =
∫

ϕ†
q(x)ψq(x) dqx ≡

∫
ϕ


q−1(x)ψq(x) dqx. (46)

This is linear with respect to ψ , the norm of a function ψq is a real, non-negative number,
〈ψ,ψ〉q � 0 and

〈ψ, ϕ〉q = 〈ϕ,ψ〉†q . (47)

Analogously to the undeformed case, it is easy to see that from the above properties of the
q-scalar product follows the q-Schwarz inequality

|〈ϕ,ψ〉q |2q � 〈ϕ, ϕ〉q〈ψ,ψ〉q . (48)

Consistently with the above definitions, the q-adjoint of an operator Aq is defined by
means of the relation〈

ψ,A†
qϕ

〉
q

= 〈ϕ,Aqψ〉†q, (49)

6
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and, by definition, a linear operator is q-Hermitian if it is its own q-adjoint. More explicitly,
an operator Aq is q-Hermitian if for any two states ϕq and ψq we have

〈ϕ,Aqψ〉q = 〈Aqϕ,ψ〉q . (50)

First of all, the above properties are crucial to have a consistent conservation in time of the
probability densities, defined in equation (44). In fact, by taking the complex q-conjugation
of equation (33), summing and integrating term by term the two equations, we get

ih̄
∂

∂t

∫
ψ †

qψq dqx =
∫ [

ψ

q−1(Hqψq) − (Hq−1ψ


q−1)ψq

]
dqx = 0, (51)

where the last equivalence follows from the fact that the operator Hamiltonian is q-Hermitian.
In this context, it is relevant to observe that it is possible to verify the above property by using
the time-spatial factorization solution ψq(x, t) = φ(t)ϕq(x) of the q-Schrödinger equation.
In fact, we have

ih̄
∂

∂t

∫
ψ †

qψq dqx =
∫

φ
φ
[
ϕ


q−1(Hqϕq) − (Hq−1ϕ

q−1)ϕq

]
dqx. (52)

From the stationary Schrödinger equation (37) and its complex q-conjugation we have directly

ϕ

q−1(Hqϕq) = (Hq−1ϕ


q−1)ϕq, (53)

and the terms in the square bracket of equation (52) go to zero.

6. Observables in q-deformed quantum mechanics

On the basis of the above properties, we have the recipe to generalize the definition of
observables in the framework of q-deformed theory by postulating that:

• with the dynamical variable A(x, p) associate the linear operator Aq

(
x,−ih̄D(q)

x

)
;

• the mean value of this dynamical variable, when the system is in the dynamical
(normalized) state ψq , is

〈A〉q =
∫

ψ †
qAqψq dqx ≡

∫
ψ


q−1Aqψq dqx. (54)

Observables are real quantities, hence the expectation value (54) must be real for any state
ψq , ∫

ψ †
qAqψq dqx =

∫
(Aqψq)

†ψq dqx, (55)

therefore, on the basis of equation (50), observables must be represented by q-Hermitian
operators.

If we require there is a state ψq for which the result of measuring the observable A is
unique, in other words that the fluctuations

(�Aq)
2 =

∫
ψ †

q(Aq − 〈A〉q)2ψq dqx (56)

must vanish, we obtain the following q-eigenvalue equation of a q-Hermitian operator Aq with
eigenvalue a:

Aqϕq = aϕq. (57)

As a consequence, the eigenvalues of a q-Hermitian operator are real because 〈A〉q is real for
any state; in particular, for an eigenstate with the eigenvalue a for which 〈A〉q = a.

7
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Furthermore, as in the undeformed case, two eigenfunctions ψq,1 and ψq,2 of the q-
Hermitian operator Aq , corresponding to different eigenvalues a1 and a2, are orthogonal. We
can always normalize the eigenfunction; therefore, we can choose all the eigenvalues of a
q-Hermitian operator orthonormal, i.e.,∫

ψ †
q,nψq,m dqx = δn,m. (58)

Consequently, two eigenfunctions ψq,1 and ψq,2 belonging to different eigenvalues are linearly
independent.

It is easy to see that, adapting step by step the undeformed case to the introduced q-
deformed framework, the totality of the linearly independent eigenfunctions {ψq,n} of q-
Hermitian operator Aq form a complete (orthonormal) set in the space of the previously
introduced q-square-integrable functions. In other words, if ψq is any state of a system, then it
can be expanded in terms of the eigenfunctions (with a discrete spectrum) of the corresponding
q-Hermitian operator Aq associate with the observable

ψq =
∑

n

cq,nψq,n, (59)

where

cq,n =
∫

ψ †
q,nψq dqx. (60)

The above expansion allows us, as usual, to write the expectation value of Aq in the
normed state ψq as

〈A〉q =
∫

ψ †
qAqψq dqx =

∑
n

|cq,n|2qan, (61)

where {an} are the set of eigenvalues (assumed, for simplicity, discrete and non-degenerate)
and the normalization condition of the wavefunction can be written in the form∑

n

|cq,n|2q = 1. (62)

7. Conclusions

On the basis of the stochastic quantization procedure and on the q-differential calculus, we have
obtained a generalized linear Schrödinger equation which involves a q-deformed Hamiltonian
that is non-Hermitian with respect to the standard (undeformed) definition. However, under
an appropriate generalization of the operators properties and the introduction of a q-deformed
scalar product in the space of q-square-integral wavefunctions, such equation of motion
satisfies the basic quantum mechanics assumptions.

Although a complete physical and mathematical description of the introduced quantum-
dynamical equations lies out the scope of this paper, we think that the results derived here
appear to provide a deeper insight into a full consistent q-deformed quantum mechanics in the
framework of the q-calculus and may be a relevant starting point for future investigations.
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